11,724 research outputs found

    Digging for gold nuggets : uncovering novel candidate genes for variation in gastrointestinal nematode burden in a wild bird species

    Get PDF
    Acknowledgements This study was funded by a BBSRC studentship (MAWenzel) and NERC grants NE/H00775X/1 and NE/D000602/1 (SB Piertney). The authors are grateful to Marianne James, Mario Roder and Keliya Bai for field-work assistance, Lucy M.I. Webster and Steve Paterson for help during prior development of genetic markers,Heather Ritchie for helpful comments on manuscript drafts and all estate owners, factors and keepers for access to field sites, most particularly MJ Taylor and Mike Nisbet (Airlie), Neil Brown (Allargue), RR Gledson and David Scrimgeour (Delnadamph), Andrew Salvesen and John Hay (Dinnet), Stuart Young and Derek Calder (Edinglassie), Kirsty Donald and DavidBusfield (Glen Dye), Neil Hogbin and Ab Taylor (Glen Muick), Alistair Mitchell (Glenlivet), Simon Blackett, Jim Davidson and Liam Donald (Invercauld), Richard Cooke and Fred Taylor (Invermark), Shaila Rao and Christopher Murphy (Mar Lodge), and Ralph Peters and Philip Astor (Tillypronie)Peer reviewedPostprin

    Evidence of Unconventional Universality Class in a Two-Dimensional Dimerized Quantum Heisenberg Model

    Full text link
    The two-dimensional JJ-J′J^\prime dimerized quantum Heisenberg model is studied on the square lattice by means of (stochastic series expansion) quantum Monte Carlo simulations as a function of the coupling ratio \hbox{α=J′/J\alpha=J^\prime/J}. The critical point of the order-disorder quantum phase transition in the JJ-J′J^\prime model is determined as \hbox{αc=2.5196(2)\alpha_\mathrm{c}=2.5196(2)} by finite-size scaling for up to approximately 1000010 000 quantum spins. By comparing six dimerized models we show, contrary to the current belief, that the critical exponents of the JJ-J′J^\prime model are not in agreement with the three-dimensional classical Heisenberg universality class. This lends support to the notion of nontrivial critical excitations at the quantum critical point.Comment: 4+ pages, 5 figures, version as publishe

    Comprehensive quantum Monte Carlo study of the quantum critical points in planar dimerized/quadrumerized Heisenberg models

    Full text link
    We study two planar square lattice Heisenberg models with explicit dimerization or quadrumerization of the couplings in the form of ladder and plaquette arrangements. We investigate the quantum critical points of those models by means of (stochastic series expansion) quantum Monte Carlo simulations as a function of the coupling ratio α=J′/J\alpha = J^\prime/J. The critical point of the order-disorder quantum phase transition in the ladder model is determined as αc=1.9096(2)\alpha_\mathrm{c} = 1.9096(2) improving on previous studies. For the plaquette model we obtain αc=1.8230(2)\alpha_\mathrm{c} = 1.8230(2) establishing a first benchmark for this model from quantum Monte Carlo simulations. Based on those values we give further convincing evidence that the models are in the three-dimensional (3D) classical Heisenberg universality class. The results of this contribution shall be useful as references for future investigations on planar Heisenberg models such as concerning the influence of non-magnetic impurities at the quantum critical point.Comment: 10+ pages, 7 figures, 4 table

    Managing Opioid-Tolerant Patients in the Perioperative Surgical Home.

    Get PDF
    Management of acute postoperative pain is important to decrease perioperative morbidity and improve patient satisfaction. Opioids are associated with potential adverse events that may lead to significant risk. Uncontrolled pain is a risk factor in the transformation of acute pain to chronic pain. Balancing these issues can be especially challenging in opioid-tolerant patients undergoing surgery, for whom rapidly escalating opioid doses in an effort to control pain can be associated with increased complications. In the perioperative surgical home model, anesthesiologists are positioned to coordinate a comprehensive perioperative analgesic plan that begins with the preoperative assessment and continues through discharge

    On the half-plane property and the Tutte group of a matroid

    Get PDF
    A multivariate polynomial is stable if it is non-vanishing whenever all variables have positive imaginary parts. A matroid has the weak half-plane property (WHPP) if there exists a stable polynomial with support equal to the set of bases of the matroid. If the polynomial can be chosen with all of its nonzero coefficients equal to one then the matroid has the half-plane property (HPP). We describe a systematic method that allows us to reduce the WHPP to the HPP for large families of matroids. This method makes use of the Tutte group of a matroid. We prove that no projective geometry has the WHPP and that a binary matroid has the WHPP if and only if it is regular. We also prove that T_8 and R_9 fail to have the WHPP.Comment: 8 pages. To appear in J. Combin. Theory Ser.

    All-atom folding studies of a DNA binding protein in a free-energy force field

    Get PDF
    • …
    corecore